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Diffuse X-ray Scattering from Neutron-Irradiated Graphite 
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The theory of Cochran & Kartha has been used to calculate the intensity of diffuse X-ray scattering 
from neutron-irradiated graphite. The results are compared with the powder patterns reported by 
Bacon & Warren. It seems that the displacement, due to the interstitial atom, of atoms directly above 
or below it decreases at a slower rate with increasing distance (from the interstitial atom) than that 
given by the inverse-square law. 

Introduction 

The effect of isotropic-elastic-distortion centres in a 
crystal on the scattering of X-rays has been calculated 
by Huang (1947) and by Cochran (1956) for small 
atomic displacements. The theory was extended by 
Cochran & Kartha (1956a) to the case where atoms 
are displaced by comparatively large amounts from 
their mean positions; this theory was applied by them 
(Cochran & Kartha, 1956b) to calculate the effect, on 
the X-ray diffraction pattern, of a random distribution 
of interstitial atoms and vacancies in a single crystal 
of copper. In this paper their theory has been applied 
to calculate the diffuse X-ray scattering from neutron- 
irradiated graphite, in which case the interstitial car- 
bon atoms are expected to cause an anisotropic elastic 
distortion of the lattice. The results are compared with 
the powder patterns of neutron-irradiated graphite re- 
p0tt~ct by Bacon & Warren (1956). 

Postulated model and the intensity formula 

Bacon & Warren (1956).have set up a model of the 
damaged structure, involving two parameters e and e, 
where e is the probability that an occasional inter- 
layer spacing is increased by the amount e. In the 
present analysis, the displacement u of an atom in the 
perfect structure due to an interstitial carbon atom is 
taken as A exp ( -BrZ);  A is the displacement of an 
atom in the same layer and directly above or below the 
interstitial atom, r is the distance of the atom from the 
one directly above or below the interstitial atom and 
B is a constant (Fig, 1). The displacements of atoms 
are assumed to be normal to the layers and the inter- 
stitial atoms to be distributed at random in the crystal. 

The intensity J2(S) of diffuse scattering at a point 
defined by the vector S in reciprocal space is given by 
(Cochran & Kartha, 1956a) 

J2(S) = N exp ( -  2 M) I Ta(S)I 2 , (1) 

where N is the number of defects, Ta(S) the transform 
of each defect and M=2rtZ u 2 S z, u z being the mean 
square displacement of an atom due to the combined 
effect of all the interstitial atoms. The defect is defined 

as consisting of positive atoms at positions where they 
have moved on putting the interstitial atom, and neg- 
ative atoms at the positions in the perfect structure. 

Taking the origin midway between the layers (at the 
centre of symmetry), the unit cell of graphite has the 
following four equivalent positions" 

! z ±. 0 ,0 ,¼;  1 0, 0, ¼; 3 3 , 4  , , ~, ~, ¼. (2) 

The first two equivalent points belong to the layer on 
one side of the centre of symmetry and the last two 
belong to the layer on the other side. In calculating 
the transform of the defect, the contribution of each 
such pair of layers is first obtained and then the con- 
tributions of the different pairs are added. The co- 
ordinates of atoms in the nth pair of layers in the 
perfect structure are: 

+ Inla, n2b, (n+¼) c; 
(nx+½)a, (nz+-~)b, (n+¼)e[ ,  (3) 

where n, nl, n2 are integers (positive, negative and zero) 
and a, b, c are axes of the unit cell. The corresponding 
coordinates after putting the interstitial atom would be 

+ lnla, n2b, {n+¼+(An/c )exp  ( -BrZ)} .  e; 
(nl+½) a, (n2+2)b, {n+¼+(An/c)  exp ( -Br2 )} .  el .  

(4) 

An is the value of A for the nth pairs of layers. In the 
above, it is assumed that the structure remains centro- 
symmetrical after the insertion of the interstitial atom. 
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Fig. 1. The graphite layers around the interstitial atom. The 
dashed lines show the layers after distortion; the atomic dis- 
placement at a distance r from an atom directly above the 
interstitial is shown in the figure for the layer adjacent to 
the interstitial. 
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This is not quite true since the expected position of 
the interstitial atom is not at the centre of symmetry. 
It is further assumed that the values of An are the same 
for atoms with equivalent points + (0,0,¼) and 
+ ('a t, ~a-, ¼). These approximations are, however, not 
expected to alter the results qualitatively. 

The expression tn(S) for the contribution to T~(S) of 
the nth pair of layers would then be (Cochran, 1956) 

+co +oo 

tn(S) = 2 f  _r Z" [ -  cos 2~r(r+re).  S 
n l  ~ - -  oo 1 1 2 =  - - 0 0  

- c o s  2~z(r+ro+rc).  S + cos {2~z(r+re). S + P }  

+cos  {2re ( r+ ro+re ) .  S + P}] . . . .  (5) 

= l 2 • =(n+¼)c; P where r=n ta+n2b;  ro 7a+xb ,  re = 
2zcAn c .  S 

e -Br2 =pne -Br2, and f is the atomic scat- 
C 

tering factor for carbon atom. 
Expanding cos P and sin P into power series and 

applying Ewald's transformation to replace summa- 
tions by integrals (Ekstein, 1945), the expression for 
tn(S) becomes 

- Pn ( S l  -~- S2)  ,~  2re re-Br2j o (2~z rg) dr 
H 

2(C1+ C2)XI  ~ 2xre-2Br2Jo(2rcrg) 2_ 
- -  2 P n  dr 

H , ) 0  

2rc re-3Br2 j 0 (2rwg) dr 
o 

""]" 
(6) 

In the above, Ar is the area of the projection of the unit 
cell along the c axis, Sx = sin 2rc(n + ¼) c.  S, C~ = cos 2~ 
(n+¼)e. S, $2= sin2rc{(½a+-}b).. S + ( n + ¼ ) c .  S}, C2= 
cos 2 rc {(½a + ~b). S + (n + ¼) e .  S}, R is the radius of 
the crystal cross-section normal to the c axis, I t  is a 
reciprocal lattice vector (to a reciprocal lattice point) 
and g is the projection of ( S - H )  on the (0001) recip- 
rocal plane; the summations include all reciprocal lat- 
tice points. R can be taken as infinite and using the 
formula (Watson, 1958) 

So Jo(at) e x p ( - p 2 t 2 ) t d t -  1 exp - 
0 2p 2 ' 

we get 
2zJ' [ 

[ ~2g2 ,~ 
-- ¼P~(Cx+C2) exp ~ - ~ ]  + -~sp~(Sx+S2) 

- ~ p . ( G +  --~-1 ×exp 3 B ]  + 1 4 Cz) exp - 

(7) 

- . . . ] .  (8) 

In the above expression, only one term of the sum- 
mation corresponding to the reciprocal lattice point, 
nearest to the point defined by S is retained. This seems 
to be justified unless the influence of the interstitial 
atom on the layers is very localized, which corresponds 
to a large value of B. 

Results and discussion 

The expression (8) suggests that the diffuse intensity, 
in general, decreases as one moves away from the lines 
parallel to c* through each reciprocal-lattice point; the 
rate of decrease would depend on the magnitude of B. 
For small B, the diffuse intensity would drop down to 
inappreciable value as one moves slightly away from 
the lines parallel to e* through each reciprocal-lattice 
point. This situation approximates to one-dimensional 
disorder and implies that the influence of the inter- 
stitial atoms is to move the layers normal to the c axis, 
leaving them undistorted. On the olher hand, if the 
influence of the interstitial atom on the layers is loc- 
alized, i.e. if B is large, the diffuse intensity will spread 
out from the lines parallel to e* through each reciproc- 
al lattice point. By studying the spread of the diffuse 
spot (after taking into account the thermal diffuse 
scattering) near a reciprocal lattice point in a plane 
normal to the c* reciprocal axis, it may be possible 
to get a rough estimate of the lateral extent of the 
region of increased spacing around an interstitial atom. 

The expression for tn(S) at the reciprocal point 
(0, 0, 0, l+  o)), where l is an integer is given by 

_ 4rcf [ 2rc(l+og)An 
tn(O, O, O,l + og) s in2z 

ArB [ c 

x (n + ¼) (/+ co) - {2zr(l+c°)An}2 
4 C  2 cos2~z(l+ co)(n +¼) 

+ {2~z (l+o9) An}3-- sin 2~ (n+¼) (l+o9) 
18 C 3 

+ {2rc(l+°o)An} 4 ] 
96c4 cos 2z~ (n+¼) (1+o9) - . . . .  (9) 

The diffuse intensity at (0, 0, 0, l+o)) will then be 
given by 

J(0 ,  0, 0, l + co) = N exp - 4 re2 ~ 

1£" t.(O,O,O,l+co)lz. (10) 

This expression has been used to calculate the dif- 
fuse intensity near the 0002 reciprocal lattice point 
along the c* axis. The intensity curve is shown in 
Fig.2. To obtain this curve, contributions of layers 
with n up to + 10 have been taken. For n=0 ,  i.e. for 
the layers adjacent to the interstitial atom, a value of 
An (=0.93 A) was chosen so that the distance between 
the interstitial atom and the one directly above it may, 
after distortion, be equal to 2.75 A, which is the closest 
distance observed between non-bonded carbon atoms 
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in overcrowded organic molecules like di-p-xylylene 
(Lonsdale, Milledge & Rao, 1960). For the other 
layers, An was taken as inversely proportional to the 
square of the normal distance of the corresponding 
layer from the interstitial atom, the constant of pro- 
portionality (=  15.6) being such as to make the distance 
between the first and the second layers from the inter- 
stitial (and directly above it) about 3.05 ~ after dis- 
tortion; the distance between adjacent layers in the 
perfect structure is taken as 3.4 ~. An earlier value of 
the constant of proportionality, 7.8, which made the 
distance between the first and the second layers from 
the interstitial about 2.8 ~ appeared to give too much 
intensity near the 0003 point. A value of 0.78 ~ has 
been used for the root mean square displacement, l/u 2, 
of atoms. This is the value estimated for a damaged 
graphite sample showing 9.1% lattice expansion par- 
allel to the c axis (Bacon & Warren, 1956), using the 
analogy with thermal diffuse scattering. The analogy 
is, as mentioned by Bacon & Warren, not justified; 
however, it may be expected to give a value of the 
right order. 

The shapes and positions of the 0002 and 0004 
lines for two samples of highly oriented graphite after 
neutron irradiation are given by Bacon & Warren 
(1956). For the sample showing 3.1% expansion along 
the c axis, the diffuse background around the 0002 line 
is faint but for the one showing 9.1% expansion, the 
diffuse background is quite pronounced and is asym- 
metric about the Bragg peak; the peak of the diffuse 

-0"5 to 0"5 

Fig.2. The calculated intensity (arbitrary scale) near 0002 
along the c* axis. 

background shifts towards higher angles. The cal- 
culated curve of diffuse scattering (Fig. 2) shows the peak 
towards higher angles but the width of the peak as well 
as the amount of shift from the Bragg peak is larger 
than the experimental value. Secondly, the calculated 
curve shows a weaker diffuse peak on the low angle 
side of the Bragg peak as well. This probably implies 
that the constant An decreases more slowly with in- 
crease of interstitial-layer distance than is indicated 
by the inverse-square law. With a slower rate, both 
the diffuse peaks will come closer to the reciprocal 
lattice point and, with the Bragg peak superposed, give 
one broad maximum shifted towards the high angle side. 
This will also have the effect of decreasing the width 
and the amount of shift of the diffuse peak from the 
Bragg position, and bringing them closer to the exper- 
imental values. It may, however, be mentioned that 
for proper comparison between observed and calcul- 
ated values, the curve of Fig.2 should be compared 
with the intensity near 0002 along e* from measure- 
ments on a single crystal. 

This analysis neglects the contribution of interstitial 
atoms themselves, vacancies and the influence of atomic 
displacements parallel to the layers as well as of any 
regularity in the positioning of interstitial atoms. In 
view of this and the arbitrarily assumed model, the 
results must be only of qualitative significance. 
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